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EFFECTS OF SHEAR DEFORMATION AND ANISOTROPY
ON THE THERMAL BENDING OF LAYERED COMPOSITE PLATES

J. N. Reddy and Y. S. Hsu
School of Aerospace, Mechanical and Nuclear Engineering
University of Oklahoma, Norman, OK 73019

A finite-element formulation of equations governing layeredAanisotropic
composite plates subjected to thermal and mechanical loadings is presented. An
exact closed-form solution is also presented for simply supported rectangular
cross-ply laminated plates under sinusoidal loading to validate the finite
element developed herein. The finite-element results are in good agreement
with the closed-form results and with the results of others. Material pro-
perties typical of advanced fiber-reinforced composites are used to show
the parametric effects of plate aspect ratio, side-to-thickness ratio, orien-

tation of -layers, and edge conditions on the deflections and stresses.
INTRODUCTION

With the increased use of fiber-reinforced composites in aerospace and
mechanical engineering structures, studies involving the thermomechanical
behavior of composite-material plates and shells are receiving greater atten-
tion. Most of the previous research in the field of composites deals with
isothermal problems. However, use of composites in environments with large
temperature changes (e.g., space shuttle) requires the knowledge of thermally
induced defiections and stresses. Further, thermal stresses are also induced
during the fabrication of composite materials.

The problem of thermal bending of anisotropic plates was studied first
by Pell1 [1], who derived the equations governing the transverse deflection
of a thin plate. Generalization of Pell's work to heterogeneous plates

subjected to arbitrary three-dimensional temperature distribution is due to




Stavsky [2]. Recent studies in the analysis of plates laminated of fiber-

reinforced materials indicate that the thickness effect (i.e. shear deformation)
on the behavior of the plate is more pronounced than in isotropic plates [3].
The shear deformation theory that has been proven to be adequate in predicting
the overall response of laminated anisotropic plates is due to Yang, Norris

and Stavsky [4]. Based on the Yang-Norris-Stavsky (YNS) theory, Reddy [5,6]
developed a finite-element model that is algebraically simpler than previously
developed finite elements [7-10], and yet possesses competitive accuracy.

The present investigation is concerned with the application of the
penalty finite element [6] to the thermal stress analysis of layered anisc-
tropic composite plates. To illustrate the accuracy of the present element,
closed-form solutions are also presented for the equations governing (i.e.,
the YNS theory) simply supported, rectangular, cross-ply plates under sinusoid-
al mechanical and/or thermal loadings. Finite-element solutions are presented
to show the effects of variations in geometry, lamination parameters, boundary
conditions, and loading on the shear deformationand thermal response of

statically loaded layered anisotropic composite plates.
GOVERNING EQUATIONS

Consider a plate of Eonstant thickness t composed of a finite number
of anisotropic layers with arbitrary orientations. The coordinate system
is such that the middle plane of the plate coincides with the x-y plane,

and the z-axis is normal to the middle plane, R.

The displacement field in the YNS theory is assumed.
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where u, v, and w are the displacements along x,vy, and z directions,

respectively, Uy

¥y and vy are the shear rotations.

The equilibrium equations associated with the YNS theory are
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where Ni 5 aNi/ax etc., P and p, are the in-plane distributed forces,

q is the transversely distributed load, and Ni’ Qi and Mi are the stress

= Q]

+ N

=0 , M6,x

and moment resultants defined by

t/2
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(]’Z)Ui dz , (Q],Qz)

+ M

and v, are the in-plane displacements of the mid-plane, and

2y P2 Ql,x % Qz,y oy

(2)
by L =0
t/2
= s d
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Here oi(i=1,2,6) denote the in-plane stress components (01

06 = ny)-

Assuming monoclinic behavior (i.e., one plane of elastic symmetry) for each

layer, the constitutive equations for an arbitrarily laminated plate are
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The plate stiffnesses Aij’ Bij’ and Dij are given by
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i where Q&?) are the stiffness coefficients of the m-th layer in the plate coordinates,
f and z, is the distance from the mid-plane to the lower surface of the m-th

E and Mg, due to thermal loading

layer. The stress and moment resultants, N
are defined by
b4
m+1
(Ng,Mg) =3 j £0Q
z

f; ; (m) 0(Tge2Ty) dz 4 (1,5 = 1,2,6) (6) |
|

¥
where a; are the thermal coefficients of expansion in the plate coordinates,
and T is the temperature change from a reference state,

|
'J T(xsy52) = T (x,y) + 2T;(x,y) (7)
f
5

Note that the temperature variation through the thickness is assumed to be 1
linear, consistent with the plate theory.

Substituting Eq. (4) into Eq. (2), we obtain the following operator
equation,

[L1Gs} = (f} (8) 1

where {5} = {uo,vo,w,wx,wy}r, [L] is the (symmetric) matrix of differential
operators,

Lip = Ay * 2469, * Aggdp

(Ao*Rgg)dyp + Argdyy + Aggdpy 5 L3 = 0,

-
n

By1dyy * 2Bydyp + Bgedp,
Lis = (Byp*Bgg)dyp * Bygdyy * Bygdyy = Loy »

2hygdyp + Agadon * Aggdyy o Lp3 = 0

2Bygdy, + Bopdyy + Bggdy,




L33 = -Agqdy1-2A45d12-Ag5d00s Lag = -Agqdy-Aygd;

Lys = ~AggdyAssdps Lyg = Dqqdy1#2D;6d; ,#Dgsdp0-A
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Las = (D12*Dg6)d15*01691#026%207A05> L5 = 2026%12*022922*D66% 1 (9)

and the components of the generalized force vector, {f}, are given by
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In Eq. (9), dij denote the differential operators
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EXACT CLOSED-FORM SOLUTION

The boundary-value problem associated with the equilibrium of layered
anisotropic composite plates involves solving the operator equation (8)
subjected to a given set of boundary conditions. It is not possible to
construct exact solutions to Eq. (8) when the plate is of arbitrary geometry, 1
constructed of arbitrarily-oriented layers, and subjected to an arbitrary loading
or boundary conditions. However, an exact closed-form solution to Eq. (8) can
be constructed when the plate is of rectangular geometry with the following
edge conditions, loading, and plate construction.

Boundary conditions (freely supported)
u(x,0) = u(x,b) = 0, Ny(x,0) = Nz(x,b) =0

V(0,y) = v(a,y) = 0, N,(0,y) = Ny(a,y) = 0 T
) b
i

w(x,0) = w(x,b) = w(0,y) = w(a,y) = 0 (M

wx(x,o) = wx(x,b) =0, Mz(x,o) = Mz(x,b) =0

Wy(O..V) o wy(a.Y) =0, M](O'.Y) b M'l(av.Y) =0 el S
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Loading (sinusoidal)

q=q':n sin ax sin gy, T°=Tgn sin ax sin gy, T]=TTn sin ux sin gy

(12)
P]=5T" sin ax cos By , P2=§g" cos ax sin By , a = mn/a , B = nu/b
and m and n are integers.
Plate construction (cross-ply, i.e., o should be either 0° or 90°)
Mg R Rg "0 s lg =B "0 B e B0 .00 Vi

Under these specific conditions, the solution (uo.vo,w.v&,dy) to Eq. (8)

is of the form,

u =U_cosax sin By , v. =V _sinax cos By

X m mn

() mn 0 mn
w = wmn sin ax sin By (14)
b= X n €OS ox sin By , wy =Y _sin ax cos By

where Umn’ an, etc. are parameters to be determined subjected to the con-
dition that the solution in Eq. (14) satisfies the operator equation (8).
Substituting Eq. (14) into Eq. (8), we get

[C]{a} = {F} (15)
where

A
Y 31, (F} = (PO,FIN FON 0N pn,

ol (Umn’ vmn’ wmn’ xmn’ mn

and the elements of the coefficient matrix, [C], are given by
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Thus, for a given o = mn/a, 8 = nu/b, 9 » ??n (see (10) and (12)), and cross-
ply construction, one needs to solve the 5 by 5 matrix equation (15) for the

vector {A} of amplitudes of the generalized displacements.
FINITE-ELEMENT FORMULATION

As pointed out in the previous section, exact solution to Eq. (8) can
be obtained only under special conditions of geometry, edge conditions, loadings,
and lamination. Here we present a simple finite-element formulation which does
not have any limitations (except for those implied in the formulation of the
governing equations).

Suppose that the region Rissubdivided into a finite number N of subregions
or finite elements, Re (e = 1,2,...,N). Over each element the generalized

displacements (uO,vo,w,wx,wy) are interpolated according to

r 1 r 1 S 2
uo-'z.:ui%.,voagvi¢i,w=§wi¢i,
1 1 1
1
: P p 3 (18)
wx = f Wx1°¢1' s ‘l'y = 15.; qui¢i

where ¢? (a = 1,2,3) is the interpolation function corresponding to the i=th node
in the element. Note that the in-plane displacements, the transverse dis-
placement, and the slope functions are approximated by different sets of
interpolation functions. While this generality is included in the formula-

tion (to indicate the fact that such independent approximations are possible),

we dispense with it in the interest of simplicity when the element is actually
programmed and take ¢} = ¢§ = ¢? (r=s =p). Here r, s, and p denote the

number of degrees of freedom per each variable. That is, the total number of

degrees of freedom per element is 2r + s + 2p.
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Substituting Eq.

(18) into the Galerkin integrals associated with the

operator equation (8), which must also hold in each element Re’

f ([L]tsy - (fr){e}
Re

dx dy = 0

and using integration by parts once (to distribute the differentiation

equally between the terms in each expression),we obtain

where the {u}l, {v}, etc. denote the columns of the nodal values of u, v,
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respectively, and the elements K?? (a,8

and Fq of the force vector are given by
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.,5) of the stiffness matrix




44 _ X Xy Xy 0
Kij = D1Tig * Dig(THS + T59) + DggTd; + AggTi;
55 . xy
Ky =D (T.. ) y 0
ij 26' 1] 66 1J + DZZT A55Tij (21)
iR 1 = A
F? = J f s dx dy, (¢ =1,2; 1 =1,2,...,r)
Re
F? -_I q¢§ dx dy, (i = 1,2,...,s)
R
e
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e
and GiJ G?j, etc. In the special case in which ¢} = ¢§ = ¢?, all of the

matrices in Eq. (23) will coincide.

In the present study rectangular elements of the serendipity family
are employed with the same interpolation for all of the variables. The
resulting stifness matrices are 20 by 20 for 4-node element and 40 by 40
for the 8-node element. As pointed out in a recent study (6], the YNS
theory can be derived from the corresponding classical thin plate theory

by treating the slope-displacement relations
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AW W
=l y — = = 24
8y » 3y = "8, (24)

as constraints. Indeed, when the constraints in Eq. (24) are incorporated
into the classical-thin plate theory by means of the penalty method, the
resulting equations correspond to the YNS theory with the correspondence,

o, - ¥, and 8 - by (25)

y

It is now well-known that whenever the penalty method is used, the so-called
reduced integration [11] must be used to evaluate the matrix coefficients

in Eq. (21). Thét is, if the four-node rectangular element is used, the 1 x 1
Gauss rule must be used in place of the standard 2 x 2 Gauss rule to numerically
evaluate the coefficients Kij' For more details on the effect of reduced

integration on the solution accuracy, one can consult [12,13].
NUMERICAL RESULTS

The finite element based on the formulation of previous sections is
employed in the static analysis of rectangular plates. The effect of
boundary conditions, laminations, and loadings on the bending deflections
and stresses is investigated. In the following analyses, two types -of
materials properties, typical of advanced fiber-reinforced composites,

are employed:
Material I: E]/E2 = 25, 612/E2= 0.5, 623/E2 = 0.2, vig = 0.25

Material II: E1/E2 = 40, 612/52 = 0.6, 623/E2 = 0.5, vip * 0.25

It is assumed that 612 = 623 and Vip = Vi3 A value of 5/6 was used for

2

the shear correction coefficients, k] = kg (see Whitney [14]). A1l of the

computations were carried out on an IBM 370/158 computer.

First the effect of various boundary conditions on the bending




1

deflection is investigated. Table 1 contains deflections for six types

of boundary conditions. BC-I corresponds to a simply supported case, BC-II
corresponds to the case in which two vertical sides are simply supported
and the other two sides clamped, and BC-III through BC-VI correspond to
various clamped cases. Note that there aregreat differencesbetween the
deflections obtained by BC-I1II and BC-V. The finite element results are

in close agreement with the exact solutions of Timoshenko [15] and Das and
Rath [16]. Table 2 contains bending deflections for BC-I and BC-II for
isotropic (v = 0.3) plate subjected to uniform temperature distribution
(i.e., g =0, Py = 0, P, = 0, T,=0, T] = 1.0). The finite element results
are in good agféement with Timoshenko [15] for all aspect ratios. The
table also shows the numerical convergence of linear and quadratic finite
elements.

Figures la and 1b show variation of the bending deflection with the
aspect ratio, and side-to-thickness ratio for isotropic and orthotropic
single-layer plates. Note that the deflection increases with decreasing
aspect ratio for thin isotropic plates, whereas for orthotropic plates
(Material I, a, = 3a1), the deflection increqses slowly with a/b > 1

and then decreases. That is, orthotropic materials have a damping effect

on the transverse deflection. The effect of thickness shear strain on the de-

flection is shown in Fig. 1b. for different aspect ratios of single-layer
orthotropic plate. It is clear that there is less than 10% increase in
deflection for thick plates (compared to the thin plate deflection) sub-
jected to thermal loading, whereas it is known that the increase in de-
flection is of order 30% in plates subjected to mechanical loading. Again,

the finite element results are in close agreement with the closed-form

solution presented herein.
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Table 1.

Effect of boundary conditions on the deflection for isotropic

plate subjected to uniform temperature (g=0, To=0, v=0.3)

Deflection, w o

Mesh a/b Exact FEM Boundary Conditions

1.0 | 0.9578* | 0.9575 u=w=4, =0 on CD
Q4 1.5 | 0.5824 0.5822 BC-I:

2.0 | 0.3702 | 0.3701 veg, =0 on K

1.0 | 0.206" | 0.2063 u=vew=y,=y, =0 on CD
Q4 1.5 | 0.036 | 0.03601 | BC-II:  _ . .o on gc

2.0 | 0.0055 | 0.00561 y

1.0 - 0.0137
Q4 1.4 - 0.0224 BC-III: u=v=w=wx=wy=0 on CD and BC

2.0 — I 0.0276

1.0 | 0.0138* | 0.0138 e T D
Q4 1.4 | 0.0226 | 0.0226 BC-IV: Y

2.0 | 0.0277 | 0.0277 u=v=w=y, =0 on BC

1.0 - 0.0445 u=v=w=wx=0 on CD
L4 BC-v: _ __T_

1.2 — 0.0619 u-v—w—wy-O on BC
L4 1.0 — 0.0455 BC-IV: u=v=w=0 on CD and BC

- = _ 10t = _ =l
* Timoshenko [15], + Das and Rath [16]; w = a ¥, T =
y 1
Lot c
4
|
u=¢x=0 a Quarter plate
A = = B X
v wy 0 !
Q4 = 4x4 mesh of (8-node) quadratic elements

L4

4x4 mesh of linear elements




P
a
)
I
|

10 tW/uflaz

W=

13

1.2

1.0

0.8

0.4

< ll T T T T T
ST-sinu§£jda1 temp; UT-uniform temp.
- y

isotropjc, BC-I, ST

q‘o_.orthotropic(Mat. [)7
N BE~I, ST

4sot:;;:?\\q

BC'I 9 UT

L isotropic,QBC-II, uT
(a/t=100)
- exact o
o FEM
" | " = . -
0]k 1.0 1.5 2.0=a/b

(a) Deflection versus aspect ratio

.08 o] T T T T . . - .
.06+ ‘8\ —a/b = 0.5 l
E \\\3::'_-“‘ o o
.04r lfh = ] *
TR <
- -
i ‘OZT (Orthotropic plates, Mat. I, a; = 3a;) ;
<
W 0.96L BC-1I, ST 1’
=]
3 a/b =1.5
2 08 oA % |
S
p— |
" 920 — Exact ]
- . <
= ecoA FEM /_—a/b - :
ills "
./f
.75k /" -
[
.73 éL, 1 " | " | & i |
10 20 - 50 3/t
(b) DOeflection versus side-to-thickness ratio
Figure 1. Effects of aspect ratio, side-to-thickness ratio, loading
and boundary conditions on the single-layer plates.




Table 2. Effects of the asggct ratio, and side-to-thickness ratio
on the deflection™ for isotropic plate subjected to uniform
temperature (q = 0, Tg®0, us= 0.3)

BC 1 BC II
t/a Source - T
~ a/b=1 la/b=1.5 |a/b=2 | a/b=1 |a/b=1.5 a/b=2
Das and Rath (16] | 0.957* | 0.582* |0.370%| 0.206* | 0.036* | 0.0055*
Timoshenko [15] | 0.9578 | 0.5824 10.3702
0.01 [ 2 1.0833 | 0.6540 |0.4078| 0.1927
L4 0.9832 | 0.5965 [0.3775| 0.2057
FEM ) q2 0.9632 | 0.5908 [0.3806| 0.2005
@ 0.9575 | 0.5822 [0.3701| 0.2063 | 0.0360 | 0.00561
Das and Rath (161 0.960 | 0.584 |0.371 | 0.213 |0.039 |0.0067
Timoshenko (151 | 0.9578 | 0.5824 |0.3702
Ll L2 1.0833 | 0.6540 |0.4078| 0.2168 | 0.0127
L4 0.9832 | 0.5965 |0.3775| 0.2144 | 0.0332
FEM ) q2 0.9552 | 0.5820 [0.3710| 0.2130 | 0.0420
i 0.9576 | 0.5821 |0.3700| 0.2132 | 0.0390 | 0.0066
Das and Rath (16]] 0.962 | 0.586 |0.373 | 0.223 | 0.044 |0.0085
Timoshenko [15] | 0.9578 | 0.5824 |0.3702
0.075 L2 1.0833 | 0.6540 |0.4078| 0.2353 | 0.0231
L4 0.9832 | 0.5965 [0.3775| 0.2239 | 0.0380
FEM ) q2 0.9554 | 0.5815 |0.3702| 0.2210 | 0.0441
s 0.9576 | 0.5821 |0.3700| 0.2219 | 0.0432 | 0.0085
Das and Rath [16]| 0.967 | 0.589 |0.375 | 0.235 | 0.050 |0.0114
Timoshenko [15] | 0.9578 | 0.5824 |0.3702
KRSEY 2 1.0833 | 0.6540 |0.4078| 0.2545 | 0.0342
cey L4 0.9832 | 0.5965 [0.3775| 0.2363 | 0.0445
Q2 0.9555 | 0.5813 [0.3699| 0.2322 | 0.0491 |0.0113
Q@ 0.9576 | 0.5821 [0.3700| 0.2330 | 0.0492 |0.0108

* Timiting solution as t/a -+ 0

+W= 10t w

G.Tlaz

14




Figure 2 shows the mechanical response of two-layer cross-ply (0°/90°)

square plates (Material I) subjected to sinusoidally and uniformly distributed
loading (T0 =T, = 0). Note that the shear deformation effect is relatively
more pronounced for sinusoidal loading than for uniform loading. In Table
3, the deflections due to thermal loading and combined 1oading are compared
with the corresponding closed-form results. The table also contains deflec-
tions for single-layer and three-layer (0°/90°/0°) plates. It was noted
that the deflections obtained for four-layer, symmetric cross-ply plates
(0°/90°/90°/0°) are very close to those obtained for single-layer plates (for
the same total thickness).
The effect of thickness and aspect ratio on the thermal and mechanical
response of cross-ply plates (0°/90°, 0°/90°/0°, 0°/90°/90°/0°, Material I,
T, =1.0, ap = 3ay, a; = 107%, P, = P, = 0) is shown in Figure 3. The
finite-element solution is in close agreement with the closed-form solution
everywhere except for small values of a/t (i.e. for thick plates). The effect f
of thickness shear on the deflection is less with the increasing aspect ratio.
Clearly, the antisymmetric cross-ply plates (0°/90°) have different response
characteristics with respect to the aspect ratio when compared with the
symmetric cross-ply plates (0°, 0°/90°/0°, or, 0°/90°/90°/0°). §
In Figure 4, the closed-form and finite-element solutions of four- |
layer, cross-ply (0°/90°/90°/0°) plates subjected to sinusoidal temperature
distribution and/or mechanical loading are compared. It also contains
finite-element solutions for simply supported platessubjected to uniform
temperature distribution, and clamped platessubjected to parabolic tempera-
ture distribution along y-axis and constant along x-axis. No closed-form h
solutions are available for these two problems. Specifically, the figure

shows non-dimensional deflection versus side-to-thickness ratio for the
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____________________
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(b) Stresses

Figure 2 Mechanical bending of two-layer (0°/90°)

e

square plates (Material I).
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(b) Deflection versus aspect ratio

Figure 3 Effect of thickness and aspect ratio on the
deflection of cross-ply plates under combined loading

(Matérial I, ¥, =1.0, To =0, ap = 3a;, a; = 107%)
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Table 3. Effects of loading, lamination, and thickness on the
non-dimensionalized deflections for simply-supported
(BC-I) square plate (Material I, a, = 3a;)
A w (sinusoidal temp.) w (sinusoidal temp. and Toading)
0° 0°/90° 0°/90°/0° 0° 0°/90° 0°/90°/0°
100 |1.0313° 1.6765 1.0949 1.0008 2.4563 1.0025
(1.0312)* (1.6764) (1.0948) (1.0006) (2.456) (1.0018)
1.0317 1.6765 1.0963 1.0117 2.4625 1.0150
= (1.0317) (1.6764) (1.0962) (1.0116) (2.462) (1.0149)
1.0334 1.6765 1.1018 1.06068 2.509 1.0802
i (1.0333) (1.6764) (1.1017) (1.0657) (1.509) (1.0800)
1.0346 1.6765 1.1058 1.1117 2.5448 1.1292
) (1.0345) (1.6764) (1.1057) (1.1116) (2.544) (1.12%9)
1.03% 1.6765 1.1224 1.2974 2.7003 1.3372
o (1.0395) (1.6764) (1.1223) (1.2973) (2.700) {1.3371)
1.0440 1.6765 1.1365 1.4672 2.8440 1.5233 |
10 {(1.0439) (1.6764) (1.1364) (1.4670) (2.844) (1.5231)
1.0602 1.6765 1.1870 2.1869 3.4667 2.2832
e (1.0601) (1.6764) (1.1869) (2.1867) (3.466) (2.2829)
1.0721 1.6765 1.2224 2.8332 4.0416 2.9424
: (1.0720) (1.6764) (1.2224) 2.8329) (4.041) (2.9421)

+closed-form solution; *finite-element solution
3
W10 hwagTia? , =l

E, + (]+\J )E
= i 4G $ =4 12
q:a ¥ E i3 [ 12 ]'V12V21 ]/]2




following cases(obtained using 2x2 mesh of quadratic elements):
1. simply-supported square plate (SS) subjected to sinusoidal loading
(SL) (Material I, To =T, =0,P, =P, =0)0
2. same as Case 1, except Material II, and sinusoidal temperature (ST)
distribution (T; = 1.0) —e-
3. same as Case 1, except sinusoidal temperature (ST) distribution

(T, = 102) o—

4. same as Case 1, except 0, = 0, and sinusoidal temperature (ST)

distribution —=

5. same as Case 1, except %> 0, and uniform temperature (UT)
distribution ---

6. clamped square plate (CC) subjected to parabolic temperature
distribution, equivalent to the mechanical loading, P, = P, = 0,

q = P*, where -.-
E1(a1+ vpia2)

3
p* = 1
6(] -\)12\)21)

= 3 3
Different nondimensionalizations are used for pure mechanical loading (w= 19335%5—)
0
‘Eﬂt ). In the case of combined loading,
alTlaZ
the same nondimensionalization as that in mechanical loading is used. It

and pure temperature loading (w =

is found that the thermal bending (qo = 0) is virtually independent of the
mechanical properties (i.e. same for Materials I and II) of the plate. Also,
the thermal bending (w) is almost independent of the thickness for sinusoidal
temperature distribution. However, it is clear from Case 6 that the thickness
effect is more pronounced on the deflection of a clamped plate under parabolic
temperature distribution.

Figure 5 shows the effect of thickness on the thermal bending (q° =0,
Py = P, = 0) of cross-ply and angle-ply plates. First note that the deflection

scale is amplified (compared to Figure 4) in order to show the relative
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Figure 4 Comparison of closed-form solutions and finite 1
element solutions for four-layer cross-ply
(0°/90°/90°/0°) plate.
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effect of thickness shear strain. For example, if the deflection for 4-layer
(0°/90°/90°/0°) cross-ply (Material II) shown in Figure 5a were plotted

to the same scale as that used in Figure 4, it would have overlapped on that
shown (in Figure 4) for 4-layer (0°/90°/90°/0°), cross-ply (Material I).
Although not plotted, the deflection vs. side-to-thickness ratio plot for the
four-layer antisymmetric cross-ply (0°/90°/0°/909, Material II, a/b = 1)

plate is almost identical to that shown for the 4-layer, antisymmetric angle-
ply (45°/-45°/45°/-45°, Material II, a/b = 1) except for an additive constant
(i.e. shift) of unity (with respect to the nondimensionalization used there).

From Figure 5a it is clear that the thickness shear effect is amplified for

larger aspect ratios (a/b). Figure 5b shows the normal shear stresses for
the two cases for which deflections are plotted in Figure 5a. The thermal
bending (deflection as well as stresses) for symmetric angle-ply (45°/-45°/
-45°/45°, Material II, a/b = 1) plate was found to be (not shown here for
brevity) similar to that of the antisymmetric angle-ply plates for the same
material properties, loading, and boundary conditions, except for a small

positive shift in the deflection.
SUMMARY AND CONCLUSIONS

A finite-element formulation of equations governing layered anisotropic
composite plates subjected to mechanical as well as thermal loading is
presented. The element includes the effect of shear deformation and involves
five degrees of freedom (three deflections, and two slope functions) per
node. Numerical convergence of linear and quadratic elements is shown,
and results are presented for cross-ply and angle-ply rectangular plates
subjected to sinusoidal and uniform loadings; thermal, mechanical, and com-
bined loadings are considered. To check the finite element results, a closed-

form solution is developed herein for cross-ply rectangular plates subjected

B— - - e e
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Figure 5 Effect of thickness on the thermal response of
cross-ply and angle-ply simply supported plates
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to sinusoidal mechanical and/or thermal loadings. The finite-element results
agree very well with the closed-form solutions. The maximum error (about 10%)
in deflections and stresses occur in the thick plate region (i.e., for side-
to-thickness ratios smaller than 10). Thus, the finite element developed
herein is computationally simple compared to other plate and shell elements
used previously in the thermal stress analysis of plates. Extension of the
present element to nonlinear analysis seems to be the next logical step.

In that case, the present element saves substantial computational costs.
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